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Abstract
Virtual power plants (VPP) can increase reliability and efficiency

of power systems with a high share of renewables. However, their

adoption largely depends on their profitability, which is difficult

to maximize due to the heterogeneity of their components, differ-

ent sources of uncertainty and potential profit streams. This paper

proposes two profit-maximizing operating strategies for a VPP

that aggregates solar systems and electric vehicle (EV) chargers

with vehicle-to-grid (V2G) support, and generates profit by trad-

ing energy in day-ahead and imbalance electricity markets. Both

strategies solve a two-stage stochastic optimization problem. In the

first stage, energy bids are placed by solving a sequence of linear

programs, each formulated for a specific forecast scenario. In the

second stage, given the day-ahead commitments and real-time mea-

surements, the decisions with respect to charging or discharging

EVs are made sequentially for every hour and adjustments to the

day-ahead commitments are settled in the imbalance market. The

two strategies differ in how they solve the sequential decision mak-

ing problem in the second stage. But, they both foresee the effect of

their current (dis)charge decisions on the feasibility of fulfilling the

EV charging demands using a one-step lookahead technique. The

first strategy employs a heuristic algorithm to find a feasible charg-

ing schedule for every EV that is connected to a charger. The second

one utilizes a soft actor-critic reinforcement learning method with a

differentiable projection layer that enforces constraint satisfaction.

We empirically evaluate the proposed operating strategies using

real market prices, solar traces, and EV charging sessions obtained

from a network of chargers in the Netherlands, and analyze how

the uptake of V2G could affect profitability of this VPP.

CCS Concepts
• Mathematics of computing→ Mathematical optimization; •
Computing methodologies→ Reinforcement learning.
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1 Introduction
Future power systems will heavily rely on distributed energy re-

sources (DERs) as they provide energy at lower cost than the electric

grid, and enable greater resilience during adverse grid events. These

resources, which generate, store, or reshape energy profiles, can

be classified into five types: distributed generation units (e.g., solar
systems), battery storage, electric vehicle (EV) charging stations,

grid-interactive appliances, and power-to-heat resources (e.g., heat
pumps and thermal storage) [25]. Massive DER growth is expected

in the next several years. The cumulative DER capacity in the United

States will reach 387GW by 2025 [7]. In Europe, DERs will provide

100GW of demand response, and in Australia, they will supply 30%

to 45% of the total electricity demand by 2050 [19].

With the growing adoption of DERs, the concept of a virtual

power plant (VPP) has become increasingly popular [9]. A VPP

aggregates and orchestrates disparate DERs through sensing, com-

munication, and control technology, to provide various services to

the grid and increase the value of the DERs. For example, Tesla [6]

and Swell Energy [4], in partnership with local utility companies,

have implemented VPPs to support the grid by aggregating energy

storage and solar systems in residential buildings. A novel VPP im-

plementation that we study in this paper consists of solar systems,

a fleet of EVs, and charging stations with vehicle-to-grid (V2G) sup-

port. This VPP combines renewable generation with mobile energy

storage that can be charged and discharged subject to various con-

straints, such as fulfilling the EV charging demand by some deadline.

Such a combination has been shown to enhance the mutual benefits

of solar generation and flexibility of the EV fleet [34, 35], yet the

uncertainty in solar production and EV mobility together with the

large number of decision variables have hindered the progress to-

wards an optimal operating strategy. There are a few pilot projects

of this type of VPP which are still in early stages (e.g., the project
in Utrecht [8] will combine 2,000 solar panels, 250 bidirectional

chargers, and a car-sharing fleet).

The VPPs can trade their aggregate energy in different stages of

electricity markets, such as the wholesale market (day-ahead and

intra-day), ancillary service, and capacity markets [25]. Participa-

tion in the wholesale electricity market, in particular, has attracted

more attention [37] due to its simple form of bidding, higher pre-

dictability, manageable types of (energy) commitments, and the fact

that it is by far the largest electricity market today. The participation

of VPPs in this market could reduce wholesale prices considerably

and cut end users’ electricity bills. For example, Tesla’s VPP in

South Australia [3] can reduce the annual electricity bill of a typical

customer by 30% by trading in the wholesale market. Inspired by
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this, we consider a setting in which the VPP trades (buys/sells) en-

ergy in the day-ahead (DA) market. Due to the uncertainty in solar

power and EV charging demand, the amount of energy provided

by the VPP in real time may not match its DA commitment. In this

case, real-time deviations from the DA commitments are adjusted

by the system operator, and the resulting financial cost or profit

in the imbalance (IM) market is transferred to the VPP operator.

Figure 1 illustrates the VPP’s participation in these two markets. In

the DA market, the (price-taker) VPP operator places an energy bid
for every hour of the next day according to its predictions of the

available solar energy, DA and IM market prices, and EV charging

demands. On the operation day (i.e., the next day), deviations from
the DA bids are adjusted in the IM market according to imbalance

prices. The price volatility in these markets further complicates the

design of an optimal operating strategy for this VPP.

The VPP operator can take advantage of V2G to shape the EV

charging demand to increase its profit. We study the setting in

which the VPP operator owns and operates the EV fleet, thus it

does not collect payment from the EVs for charging their battery,

nor does it compensate them for participating in V2G. Its profit

solely depends on the amount of energy traded in the twomarkets in

each hour. An example of this VPP is a car-sharing or taxi company

that owns a fleet of EVs in addition to bidirectional chargers and

solar systems installed across the city (as depicted in Figure 1). The

optimal operation of this VPP is a complex, two-stage stochastic

optimization problem due to time-varying constraints and high

uncertainty that can be attributed to intermittent solar generation,

mobility and energy demand of EVs, and electricity market prices.

We develop practical operating strategies for this VPP that involve

(a) bidding in the DA market according to the average solution of a

sequence of linear programs defined for different forecast scenarios,
i.e., realizations of random variables; (b) charging or discharging

EVs in the next day via an online algorithm to maximize the VPP’s

profit, while ensuring the demand of every EV can be met before it

disconnects from the charger. Our contribution is threefold:

(1) Developing efficient operating strategies:We propose

two profit-maximizing strategies for the VPP described above.

Both strategies place energy bids in the DAmarket by solving

a number of linear programs for different forecast scenarios

and taking the average of the solutions. This wait-and-see

(WS) approach [33] is computationally efficient and yields a

good approximation to the solution of the original stochastic

program. To hedge against the uncertainty of solar genera-

tion and satisfy the charging constraints, a decision making

problem is solved in an online fashion to (dis)charge the con-

nected EVs and trade energy in the IM market. One strategy

solves this problem using a heuristic algorithm, while the

other adopts a policy learned via reinforcement learning.

Nevertheless, they both perform a laxity lookahead (defined

in Section 5) to ensure that the problem remains feasible if

they take a specific action at the present time.

(2) Evaluating the VPP operating strategies using real data:
Using real EV charging sessions from a network of chargers

in the Netherlands along with market prices and solar traces

from the same region, we show that the proposed strategies

fulfill the energy demand of each EV by its deadline and out-

perform today’s best practice of EV charging, which charges

    hr23                       Operation Day (Stage 2)                     hr0Day Before Operation (Stage 1)

LP 
Solver

EV Mobility and Charging 
Demand Forecast: 
ts, te, SoC, SoC 

Solar Production 
Forecast: Esolar

DA and IM Market  
Price Forecast:  

PDA, PIM

DA Hourly
Energy Bids:  

X = [x0, ... x23]

(Dis)Charging and 
IM Trading Decisions:

y0, z0

...

Sequential
Decision-Making
Agents Real-time Measurements

(Dis)Charging and 
IM Trading Decisions:

y23, z23

DA Commitments: X

Figure 1: An illustration of the two-stage optimization prob-
lem. Solid lines show information flow. Dashed lines show
decisions regarding market operation and EV charging.

EVs at the maximum power as soon as they arrive, without

taking advantage of V2G. Despite considerable uncertainty,

using the reinforcement-learning-based strategy, the VPP

can earn up to 59.6% of the profit that could be earned with

prefect information (ignoring all sources of uncertainty).

(3) Analyzing the economic implication of V2G:We eval-

uate the efficacy of the proposed strategies as the number

of EVs that participate in V2G increases. We show that V2G

can increase the VPP’s profit by more than 42% compared to

the case where V2G is not supported at all.

The rest of the paper is organized as follows. Section 2 summarizes

the related work on VPP implementation and operation. Section 3

introduces actor-critic methods and differentiable projection layers.

Section 4 states our assumptions and formulates the optimization

problem, Section 5 outlines the two operating strategies that we

propose, and Section 6 introduces our datasets and baselines. We

compare the proposed operating strategies with the baselines in

Section 7. We conclude the paper in Section 8.

2 Related Work
2.1 Types and trading platforms of VPPs
Extensive research has been conducted on a VPP that incorporates

some form of energy storage [22, 32, 36]. Bagchi et al. [12] quantify

the additional gain of adding a stationary energy storage system

to a VPP. A VPP that integrates EVs without V2G has been the

subject of many studies too (see for instance [16, 27, 42]). Fewer

studies consider a VPP that integrates renewable generation and

EV chargers with V2G capability [26, 41]; these are the closest work

to ours. We study the same type of VPP in a more practical setting

and propose efficient operating strategies (for bidding and smart

charging) that honor day-ahead commitments and guarantee the

fulfilment of the EV charging demands, an important requirement,

especially for V2G, that was not considered in previous work.

The VPP operator is typically assumed to be profit seeker, with

a few exceptions such as [12] where the VPP aims to become an en-

ergy independent entity. Most related work considers the wholesale

electricity market (typically the DA market) as the primary trading

platform for the VPP operator. However, a simplified version of the

wholesale market with a single stage and exogenous hourly prices

is commonly considered [16, 22, 41]. Only a small number of papers

envisage a two-stage model of trading in the electricity markets
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by accounting for the bidding in the DA market and the energy

adjustments made in the IM and/or reserve market [12, 26, 32, 42].

We also adopt the two-stage trading model where the VPP operator

trades energy in the DA market and settles its adjustments in the

IM market. Despite this similarity, the VPP that we study has a

unique configuration that includes EVs, chargers with V2G support,

and solar systems. The interactions among these DERs make the

design of the operating strategies more complicated. Besides, we

quantify the additional gain that V2G provides in this type of VPP.

2.2 The VPP operation strategy
The optimal control of DERs in a VPP can be viewed as a decision

making problem under uncertainty and risk. Thus, a wide range

of techniques, from stochastic dynamic programming to robust

optimization, can be applied to optimize the VPP operation. For

example, a distributionally robust chance-constrained model is pro-

posed in [43] to control several HVAC systems to absorb as much

solar generation as possible. In another work, a chance-constrained

energy management model is proposed in [39] to optimally con-

trol renewable generation and battery energy storage systems in

a microgrid. Despite providing theoretical guarantees, robust op-

timization methods usually find overly conservative strategies as

they do not take full advantage of the underlying data distribution.

Model Predictive Control (MPC) is another approach that has

been used to control DERs in an online fashion. In this approach, a

model is utilized to predict the system dynamics and changes in the

environment. Vasirani et al. [41] adopt MPC to decide on the oper-

ation of a VPP that integrates wind turbines and EVs (with V2G) in

an intra-day market. Distributed MPC is used in [13] to coordinate

renewable generation in one control area with storage in another

area. To lower the computational cost of MPC, a neural network

is trained in [29] to approximate the control policy of an MPC.

This neural network is then used in an online fashion to control a

solar-plus-battery system. In addition to having high computational

cost, a major drawback of the MPC-based approaches is the need

for an accurate predictive model. In our problem, the MPC-based

approach performs poorly, because market prices, and in particular

imbalance prices, are highly variable and depend on various factors

that cannot be accurately modelled. Moreover, mispredictions could

result in violation of the charging constraints.

Different types of Reinforcement Learning (RL) have been used

in recent years to solve control tasks in the energy domain that

have continuous and high dimensional action spaces. In particu-

lar, policy gradient and actor-critic methods are used to control

the charging of EVs and stationary batteries [11, 38]. Model-free

RL methods are advantageous for DER control because they do

not require a separately trained model of the system dynamics.

Instead, the RL agent continuously interacts with the environment

to learn an optimal policy that governs the operation of DERs. Tra-

ditional RL algorithms suffer from one major issue during training

and when deployed in the real world: they may take actions that

violate operational or physical constraints [21]. In the context of

controlling DER, there are usually several hard constraints that
must be satisfied at all times. It is critical to ensure that they are

satisfied in the deployment phase, and during training if it takes

place in the real environment rather than a simulator. To address

this shortcoming, various safe-RL techniques have emerged in the

literature [24, 40]. They enforce bounds on the agent’s actions to

satisfy the hard constraints. Bingqing et al. [15] show that a deep re-

inforcement learning agent trained with a differentiable projection

layer embedded in the neural network can safely control inverters

and building energy systems. To our knowledge, the application of

safe-RL techniques to smart EV charging has not been explored in

the literature yet. In this context, the charging deadlines and opera-

tional constraints of the battery can be viewed as hard constraints.

3 Reinforcement Learning
In RL, interactions between a decision-making agent and its sur-

rounding environment are modelled as a Markov Decision Pro-

cess (MDP) (S,A, 𝑅, 𝑃,𝛾, 𝜇), where S is the set of states, A is the

set of actions, 𝑅 is the reward function, 𝑃 : S × A → Δ(S) de-
scribes the next state distribution as a function of the current state

and action, 𝛾 ∈ [0, 1] is the discount factor, and 𝜇 : Δ(S) is the
distribution of starting states. Here, Δ(S) denotes the probability
simplex over states. The interaction between the RL agent and the

environment is as follows: at step 𝑡 , the agent observes a state vec-

tor 𝑠𝑡 and selects an action 𝑎𝑡 according to a policy 𝜋 (·|𝑠𝑡 ), which
is used to interact with the environment. The environment returns

a reward 𝑟𝑡+1 and the next state 𝑠𝑡+1 to the agent. The goal of the

RL agent is to learn a policy that maximizes its expected discounted

cumulative reward (or return). We define the return at time 𝑡 as

𝐺𝑡 �
∑∞
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1, and the value function 𝑣𝜋 (𝑠) as the expected
return when starting at 𝑠 and following the policy 𝜋 , given by:

𝑣𝜋 (𝑠) � E𝜋 [𝐺𝑡 | 𝑆𝑡 = 𝑠] . When the state space is continuous or

large, the state value function is approximated as 𝑣𝜋 (𝑠) ≈ 𝑣𝑤 (𝑠),
where𝑤 ∈ R𝑑 collects the parameters of this approximation. When

deep neural networks are used for function approximation, we refer

to it as deep reinforcement learning.

Actor Critic Methods They are RL methods that learn the

approximation to the policy in addition to the approximation to the

value function. The actor refers to the policy and the critic refers to
the value function learned by the agent. Themain advantage of actor

critic methods is their ability to tackle continuous action spaces. In

our work, we use the Soft-Actor Critic (SAC) algorithm [23], which

is an off-policy, maximum-entropy policy gradient method, using a

stochastic actor. We explain the SAC algorithm later in Section 5.

Safe-RL via Differentiable Projection The RL algorithms

could violate the hard constraints of the actuator or the environment

during training (as they explore the space) and/or after deployment.

Clipping or hand-crafted projection of the action taken by the RL

agent to a safe region (aka the feasible set), can prevent the violation
of hard constraints when the policy is used in practice. However,

this does not guarantee that the resulting safe action is optimal
too. Furthermore, the RL agent does not actually learn the hard

constraints, hence the actions must be mapped to the safe region

even after deployment.

To make the RL agent effectively learn the hard constraints

without sacrificing optimality, we embed an optimization prob-

lem [10] that projects a point onto the safe region, in the neural

network
1
used for approximating the policy function in the actor-

critic method. The optimization problem (described below) is a

1
The optimization problem can be implemented as a neural network layer using a

Python library called cvxpylayers: https://github.com/cvxgrp/cvxpylayers.

https://github.com/cvxgrp/cvxpylayers
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differentiable layer within the actor network, allowing the RL agent

to learn the hard constraints through backpropagation. Consider

the ℓ2-norm projection PS : R𝑛 → S which maps a point in 𝑎 ∈ R𝑛
to the point closest to it in a constraint set S ⊆ R𝑛 , as shown below:

PS (𝑎) = argmin

𝑎∈S
∥𝑎 − 𝑎∥2

2
. (1)

This is a convex optimization problem if S is a convex set. Thus,

it can be solved using a standard solver, which constitutes the for-

ward procedure in the neural network. The backward procedure is

constructed using implicit function theorem [31] where the gradi-

ents of the solution variables of (1) are calculated by differentiating

the Karush-Kuhn Tucker (KKT) conditions at the solution. The re-

spective gradients are then propagated back to the neural network.

As a result, the agent learns the hard constraints in S through the

parameter updates done when training the neural network.

4 Problem Statement
We consider a VPP that consists of a fleet of EVs, solar systems and

bidirectional chargers distributed across the city, all of which are

owned by the VPP operator. The EVs visit charging stations, each

containing multiple chargers, at random times to replenish their

battery. They stay there for a certain amount of time before they

start their next trip. This determines their charging deadline. We

assume an EV’s utility remains the same as long as it is charged to

the desired level by this deadline, and that bidirectional chargers

and solar inverters do not cause overloading or voltage violation

problems in the distribution grid. We consequently ignore the grid

constraints when optimizing the VPP operation. Moreover, we

assume that the VPP operator is not certain about the arrival time,

charging deadline, and energy demand of an EV before it arrives at

a charging station. However, once an EV arrives, it communicates

its energy demand and departure time (or deadline) to the VPP. It

is also assumed that the VPP operator allows a subset of the EV

fleet to participate in V2G, for example they can be the EVs whose

battery has a high remaining cycle life.

Because of the DERs that comprise the VPP, its demand and sup-

ply are both variable and flexible. The VPP operator trades (i.e., buys
or sells) energy in the wholesale day-ahead (DA) market, which

is a pool-based energy market. The players in this market, place

separate energy-price bids for every hour of the next day, and each

hour has an independent auction. DA markets are typically cleared

based on the uniform pricing mechanism, hence the same (clear-

ing) price applies to any market player (seller or buyer) whose bid

is accepted. We further assume that the VPP operator is a price

taker, which is reasonable given the size of a typical DA market

today. Since the marginal cost of supplying power by the VPP is

much lower than conventional generators that typically govern the

clearing prices, the VPP’s energy-price bid reduces to an energy

(quantity) bid as the corresponding price does not affect the price

it receives. This is a practical assumption for battery operators and

aggregators in electricity markets [14, 28]. With this assumption,

we can treat the DA prices as exogenous random variables, denoted

by P𝐷𝐴 = [𝑃𝐷𝐴
0

, · · · , 𝑃𝐷𝐴
23
], and postulate that the VPP operator

only bids for quantity (and not for price). At the time of operation,

the DA market players might deviate from their DA commitments.

Any such deviation must be financially settled through the imbal-

ance (IM) market. The IM market prices reflect the additional costs

incurred to serve the unexpected demand beyond wholesale com-

mitments. As such, these prices are treated as exogenous random

variables too. We assume the IM market adopts the single-pricing

(aka one-pricing) model [20] – the most prevalent pricing scheme

in the imbalance market today. In this model, selling and buying

prices in each hour 𝑡 are identical, denoted by 𝑃 𝐼𝑀𝑡 . The vector

P𝐼𝑀 = [𝑃 𝐼𝑀
0

, · · · , 𝑃 𝐼𝑀
23
] represents IM prices for one day.

In the DA bidding stage, the VPP operator does not determin-

istically know the market prices, available solar energy in every

hour of the next day, and the EV arrival and demand patterns in the

next day. It must submit a vector of energy bids X = [𝑥0, · · · , 𝑥23]
to the market, where 𝑥𝑡 is positive when the VPP commits to sell

energy in hour 𝑡 of the next day and is negative when the VPP

commits to buy energy in that hour. On the operation day, the VPP

must schedule the charge and discharge of EVs that arrive at the

charging stations. We denote this schedule by Y𝑛 = [𝑦𝑛
0
, · · · , 𝑦𝑛

23
]

with 𝑛 being the index into the set of EVs that arrive in the next

day (𝑛 ∈ N = {1, 2, ..., 𝑁 }). Hence, every element 𝑦𝑛𝑡 represents

the amount of energy stored in (positive sign) or withdrawn from

(negative sign) the battery of the 𝑛th EV in hour 𝑡 . When EV 𝑛 is not

in a charging station, the respective elements of Y𝑛 are set to zero.
2

Note that for a given vector X and a set of vectors Y𝑛 (∀𝑛 ∈ N ), the

amount of energy that must be traded in the IM market, denoted

by Z = [𝑧0, · · · , 𝑧23], can be computed from the energy balance

equation, which states that the VPP’s demand and supply must be

equal in each hour. The VPP operator will buy enough energy from

the two markets to satisfy the energy demand of all EVs by their

deadlines. Additionally, the operator can sell energy (solar produc-

tion and/or energy discharged from the batteries) in the markets.

These decisions must be made so as to maximize the expected profit

of the VPP operator. Energy bids are submitted to the DAmarket all

at once on the day before the operation day, whereas (dis)charging

and trading decisions in the IM market are made for every hour in

an online fashion.

Optimal VPP Operation Strategy: The optimal VPP operation

is the solution of a two-stage stochastic optimization problem. We

decompose this problem into two subproblems, namely stage 1

and stage 2. The stage 1 problem determines the optimal bidding

strategy in the DA market. This is not a sequential decision making

problem as hourly bids are submitted all at once. The stage 2 prob-

lem entails finding feasible schedules for charging or discharging

the EVs as they arrive at the charging stations, while trading in the

IM market to close the gap between day-ahead bids and the realized

solar generation minus the total realized EV charging demand. This

can be cast as a sequential decision making problem. We formally

define the two problems below:

Stage 1 Problem: Given different forecasts for (hourly) DA and

IM market prices, hourly solar production, EV arrivals, stay times,

and energy demands for every hour 𝑡 of the next day, where 𝑡 ∈
T = {0, 1, , ..., 23}, the goal is to compute day-ahead energy bids,

i.e.,X = [𝑥0, · · · , 𝑥23], that maximize the expected profit of the VPP

as a result of participating in both markets. This problem is solved

2
Without loss of generality, we assume EV arrivals and departures occur in the begin-

ning of a 1-hour time slot as it is the timescale of trading in the IM market. In practice,

the VPP can round the arrival or departure time to the nearest hour.
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in an offline fashion, typically in the beginning of the day before

the operation day.

Stage 2 Problem: Given the energy bids submitted to the DA mar-

ket the day before (i.e., the stage 1 solution), the current price of the
IM market and IM market price forecast for every hour until the

end of the day, the deadline and unmet energy demand of the EVs

that are currently in the charging stations, and forecast data for EV

arrivals, stay (sojourn) times, and energy demands in future time

slots, this problem concerns determining the amount of energy that

must be charged/discharged in/from the EV batteries in the current

time slot to maximize the expected profit of the VPP, such that the

energy demand of every EV is guaranteed to be satisfied by their

deadline. In other words, the stage 2 problem concerns determining

𝑦𝑛𝑡 for every EV that is currently present in the charging stations

while ensuring that it is possible to fulfill their demand before their

departure. Once these values are fixed in hour 𝑡 , the net difference

between demand and supply (𝑧𝑡 ) will be traded in the IM market

according to its current price.

5 Methodology
We explain how to solve the two problems introduced in the pre-

vious section. Specifically, we show that the stage 1 problem can

be formulated as a stochastic Linear Program (LP) and its solution

can be approximated by solving a sequence of deterministic LPs

formulated for different forecast scenarios (i.e., different hourly mar-

ket prices, solar production levels, EV arrival times, and charging

demands). Given the solution of stage 1, i.e., the DA energy bids, we

propose two algorithms to solve the stage 2 problem. Both utilize

observations up to the current time slot of the operation day and

make real-time decisions for (dis)charging EVs, and subsequently

trading in the IM market. The decisions are made while ensuring

that the charging deadlines can be met. Note stage 1 and stage 2

problems are solved in the VPP’s in-house or cloud server.

5.1 Stage 1: Linear Programming
Let E𝑠𝑜𝑙𝑎𝑟 = [𝐸𝑠𝑜𝑙𝑎𝑟

0
, · · · , 𝐸𝑠𝑜𝑙𝑎𝑟

23
] be the available solar energy in

every hour of the operation day, 𝐸𝑠𝑜𝑙𝑎𝑟𝑚𝑎𝑥 be the total peak generation

capacity of the solar systems,N𝑡 be the set of EVs that are connected
to a charger owned by the VPP in hour 𝑡 of the operation day, and

N = ∪𝑡 ∈T {𝑁𝑡 } be the set of all EVs that visit the charging stations
on the operation day. Let N𝐷 ⊆ N denote the set of EVs that

participate in V2G; hence, the operator can discharge their battery

as long as it is possible to meet their charging demand by the

deadline. We denote the EVs in N𝐷
that are connected to chargers

in hour 𝑡 of the operation day by N𝐷
𝑡 ⊆ N𝑡 . For the EV indexed

by 𝑛, we denote the energy capacity of its battery by 𝑏𝑛 , its arrival

time by 𝑡𝑛𝑠 , and the length of its charging session by 𝜏𝑛 . Hence,

its departure time will be 𝑡𝑛𝑒 = 𝑡𝑛𝑠 + 𝜏𝑛 . The maximum charge and

discharge power supported by a charger are denoted by 𝛼𝑐 , 𝛼𝑑 > 0,

respectively. We assume these maximum rates are the same for

all chargers. Since the length of each time slot is one hour, we

use the same notation (𝛼𝑐 , 𝛼𝑑 ) to represent the maximum amount

of energy that can be stored or withdrawn from a battery in one

time slot. The state-of-charge (SoC) of the battery of EV 𝑛 at time

𝑡 ∈ T is denoted by 𝑆𝑜𝐶𝑛
𝑡 , which is bounded by 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 .

The charge and discharge efficiencies are denoted by 𝜂𝑐 and 𝜂𝑑 ,

respectively. Given the energy demand of the EV and its SoC upon

arrival, denoted by 𝑆𝑜𝐶𝑛
, we calculate the target SoC, which is

denoted by 𝑆𝑜𝐶
𝑛
.

Let P𝐷𝐴,P𝐼𝑀 ,E𝑠𝑜𝑙𝑎𝑟 , t𝑠 , t𝑒 , SoC, SoC be random vectors that col-

lect the random variables and Ω be the set of possible realizations

of these random variables. The stage 1 problem maximizes the ex-

pected profit of the VPP operator subject to a set of constraints:

maximize

X, Y, Z,𝐴𝐶,𝐴𝐷
E
<P𝐷𝐴,P𝐼𝑀 ,E𝑠𝑜𝑙𝑎𝑟 ,t𝑠 ,t𝑒 ,SoC,SoC>∼Ω X⊤P𝐷𝐴+Z⊤P𝐼𝑀 (2a)

subject to − |N𝑡 | · 𝛼𝑐 ≤ 𝑥𝑡 ≤ 𝐸𝑠𝑜𝑙𝑎𝑟𝑚𝑎𝑥 + |N𝐷
𝑡 | · 𝛼𝑑 , ∀𝑡 ∈ T (2b)

𝑥𝑡 + 𝑧𝑡 + 𝑦𝑡 = 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 , ∀𝑡 ∈ T (2c)

𝑦𝑡 =
∑︁
𝑛∈N

𝑦𝑛𝑡 , ∀𝑡 ∈ T (2d)

𝑦𝑛𝑡 = 𝐴𝐶𝑛
𝑡 +𝐴𝐷𝑛

𝑡 , ∀𝑛 ∈ N𝑡 ,∀𝑡 ∈ T (2e)

𝐴𝐷𝑛
𝑡 = 0, ∀𝑛 ∈ N𝑡 \ N𝐷

𝑡 ,∀𝑡 ∈ T (2f)

− 𝛼𝑑 ≤ 𝐴𝐷𝑛
𝑡 ≤ 0, ∀𝑛 ∈ N𝐷

𝑡 ,∀𝑡 ∈ T (2g)

0 ≤ 𝐴𝐶𝑛
𝑡 ≤ 𝛼𝑐 , ∀𝑛 ∈ N𝑡 ,∀𝑡 ∈ T (2h)

𝑆𝑜𝐶𝑛
𝑡+1 = 𝑆𝑜𝐶𝑛

𝑡 +
𝐴𝐶𝑛

𝑡 𝜂𝑐

𝑏𝑛
+
𝐴𝐷𝑛

𝑡

𝜂𝑑𝑏𝑛
,∀𝑛 ∈ N𝑡 ,∀𝑡 ∈ T (2i)

𝛿𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑛
𝑡 ≤ 𝛿𝑚𝑎𝑥 , ∀𝑛 ∈ N𝑡 ,∀𝑡 ∈ T (2j)

𝑆𝑜𝐶𝑛
𝑡𝑛𝑠

= 𝑆𝑜𝐶𝑛, ∀𝑛 ∈ N𝑡 (2k)

𝑆𝑜𝐶𝑛
𝑡𝑛𝑒

= 𝑆𝑜𝐶
𝑛
, ∀𝑛 ∈ N𝑡 (2l)

Recall that 𝑥𝑡 is the DA energy bid placed for hour 𝑡 of the next

day and 𝑧𝑡 is the amount of energy that would be traded in the IM

market in that hour. The sign of 𝑧𝑡 determines whether the VPP

operator buys or sells in the IM market: positive implies selling

and negative implies buying. Constraint (2b) is an operational con-

straint that defines the DA hourly selling and buying bid caps for

the VPP operator. We assume that the selling bid cap in any hour

is the sum of the peak solar generation capacity and the maximum

amount of energy that can be discharged from the connected EVs

that participate in V2G in that hour. Similarly, the buying bid cap

in any hour is the maximum amount of energy that can be stored

in the connected EVs in that hour. Constraint (2c) is the energy

balance equation and constraint (2d) expresses the total charging

demand as the sum of the demands of individual chargers within

charging stations. Constraint (2e) splits the contribution of each EV

𝑛 to the total charging demand in time slot 𝑡 into two parts: energy

stored in its battery 𝐴𝐶𝑛
𝑡 , and energy withdrawn from its battery

𝐴𝐷𝑛
𝑡 . This is necessary as charge and discharge efficiencies can be

less than 1 in Constraint (2i). Constraints (2f)-(2h) set bounds for

the amount of energy that can be stored or withdrawn from the

battery of an EV. These bounds depend on the maximum charge

and discharge rates supported by the chargers. For the EVs that do

not participate in V2G, the amount of energy that can be withdrawn

from their battery is set to zero. Constraint (2i) updates the SoC of

each EV according to the amount of energy stored or withdrawn

from its battery in the previous time slot and the respective inef-

ficiency parameter. Finally, constraints (2j)-(2l) define bounds for

the SoC of each EV, and assign a value to it at arrival and departure

time. Observe that all constraints are affine in Problem (2).

Remark We do not need to introduce binary variables to ensure

that𝐴𝐶𝑛
𝑡 and𝐴𝐷𝑛

𝑡 are not nonzero at the same time. This is because,
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Figure 2: Comparison between the optimal DA bids (from
the ORACLE baseline defined in Section 6.2.1) and DA bids
computed using the WS approach over one year.
due to battery imperfections, a strategy that simultaneously charges

and discharges the battery of one ormultiple EVswill either increase

the deficit energy that must be purchased from the IM market or

decrease the surplus energy that could be sold in the IM market.

Either way, assuming that IM prices are nonnegative, this strategy

reduces the profit of the VPP and is therefore not optimal.

Solution of Stochastic LP Solving Problem (2) via sample-

average approximation (SAA) [30] is overly costly due to the large

number of random variables that appear in the objective function

and some of the constraints, leading to a huge optimization problem

even for a small number of samples. Thus, we opt for a practical

wait-and-see (WS) approach [33] that approximates the solution

of this stochastic linear program.
3
In this approach, we consider

a large number of forecast scenarios and formulate a determinis-

tic linear program (written below) for each forecast scenario𝜔 ∈ Ω:

maximize

X, Y, Z,𝐴𝐶,𝐴𝐷
X⊺P𝐷𝐴+Z⊺P𝐼𝑀 (3)

subject to Constraints (2b) to (2l)

We solve these deterministic linear programs independently and

take the average of the respective solutions to efficiently compute

near-optimal DA bids. We discard the tentative smart charging and

IM market trading schedules because they will be recalculated in

an online fashion (in stage 2), using more accurate data.

To create different forecast scenarios, we add white Gaussian

noise with standard deviation being 10% of the realized value to the

realized value of each random variable, namely P𝐷𝐴
, P𝐼𝑀 , E𝑠𝑜𝑙𝑎𝑟 ,

t𝑠 , t𝑒 , SoC, SoC. We have found empirically that considering 1,000

forecast scenarios (𝜔1, · · · , 𝜔1000) provides a good-quality solution
4

and the total running time of solving 1,000 deterministic LPs is less

than 15 minutes on an Intel core-i9 server with 128GB of memory.

Once the deterministic LPs are solved, we take the average of the

respective solutions and treat this as the energy bids that will be

submitted to the DA market. Figure 2 compares the optimal energy

bids (assuming perfect information) with the energy bids computed

3
It can be proved that WS yields a bound on SAA [30] as it interchanges the order of

summation and maximization.

4
Our experiment shows that the resulting DA bids do not vary noticeably if we consider

more forecast scenarios. We omit the convergence analysis to save space.

Algorithm 1: LLA for EV charging

1 S1← FindEVsWithNegativeLaxity(N𝑡 ) ; // lookahead

2 𝑒𝑡 ← ChargeEVs(S1);

3 𝑥𝑡 ← 𝑥𝑡 + 𝑒𝑡 ;

4 if 𝑥𝑡 > 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 then
5 S2← FindEVsToDischarge(𝑥𝑡 − 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 );

6 𝑒𝑡 ← DischargeEVs(S2);

7 𝑥𝑡 ← 𝑥𝑡 - 𝑒𝑡 ;

8 BuyFromImbalanceMarket(𝑥𝑡 − 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 );

9 end
10 else if 𝑥𝑡 ≤ 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 then
11 S3← FindEVsToCharge(𝐸𝑠𝑜𝑙𝑎𝑟𝑡 − 𝑥𝑡 );
12 𝑒𝑡 ← ChargeEVs(S3);

13 𝑥𝑡 ← 𝑥𝑡 + 𝑒𝑡 ;

14 SellToImbalanceMarket(𝐸𝑠𝑜𝑙𝑎𝑟𝑡 − 𝑥𝑡 );
15 end

efficiently using the WS approach. It can be seen that the difference

between the average hourly energy bids is generally insignificant.

Note that the objective function of Problem (3) is linear and its

constraints are affine.Wemodel this deterministic LP in CVXPY [17]

and solve it using Gurobi. Next, we propose two algorithms for

solving the stage 2 problem given the DA energy bids, which is the

solution of the stage 1 problem.

5.2 Stage 2: Laxity-Lookahead (LLA) Algorithm
The first algorithm we propose to solve the stage 2 problem is a

heuristic algorithm, called Laxity-LookAhead (LLA). When we run

LLA for hour 𝑡 of the operation day, it computes the laxity of every

EV that is currently in a charging station and uses this value to find

out if the charging demand of this EV will be satisfied before its

departure. This is essential for constraint enforcement. The laxity

of an EV is defined as the maximum amount of time we can delay its

charging, while still being able to charge its battery to the desired

SoC by the deadline. Specifically, the laxity of EV 𝑛, with departure

time 𝑡𝑛𝑒 , battery size 𝑏𝑛 , and target SoC, 𝑆𝑜𝐶
𝑛
, in time slot 𝑡 is:

𝑙𝑎𝑥𝑛𝑡 = 𝑡𝑛𝑒 − 𝑡 −
(𝑆𝑜𝐶𝑛 − 𝑆𝑜𝐶𝑛

𝑡 ) · 𝑏𝑛
𝛼𝑐𝜂𝑐

. (4)

Note that the laxity of an EV can be calculated deterministically

in any time slot after its arrival, because its deadline and energy

demand are communicated to the VPP upon arrival. Nevertheless,

the EV’s laxity is unknown before it arrives. The basic idea of this

algorithm is to identify all EVs that will have a negative laxity in the

next time slot if they are not charged in the current time slot. These

EVs must be charged at the maximum charge power supported

by the charger, otherwise the problem becomes infeasible. Next,

depending on whether there is surplus solar energy in this time

slot, other EVs are charged or discharged.

The LLA algorithm utilizes three main functions (see Algo-

rithm 1). In Line 1, the FindEVsWithNegativeLaxity function

returns the set of EVs that are presently connected to a charger

and will have negative laxity in the next time slot if they are not

charged in the current time slot. This set is denoted by S1 and is

determined via a one-step laxity lookahead. Concretely, to calculate

the laxity of an EV in the next time slot, we substitute 𝑡 with 𝑡 + 1
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in (4) and let 𝑆𝑜𝐶𝑛
𝑡+1 be equal to 𝑆𝑜𝐶𝑛

𝑡 . The set S1 is then passed to

the ChargeEVs function (Line 2), which is responsible for charging

these EVs at the maximum power supported by the charger. Once

these EVs are charged, we add the energy delivered to these EVs

to the day ahead commitment for this time slot, 𝑥𝑡 , to update the

amount of energy required in this time slot (Line 3). This value

is then compared with the available solar energy in this time slot,

𝐸𝑠𝑜𝑙𝑎𝑟𝑡 . If the available solar energy is not enough to supply the

demand (Line 4), we must discharge a subset of EVs or buy the

deficit from the IM market. Otherwise (Line 10), we can charge a

subset of EVs or sell the surplus in the IMmarket. LLA uses a simple

heuristic to specify the order in which we use smart charging and

trade in the IM market in both cases.

In the case that 𝑥𝑡 > 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 , the FindEVsToDischarge function

gets the amount of deficit and returns the set of EVs, denoted by

S2, that (a) participate in V2G, (b) have the highest laxity, and (c)

their laxity will not become negative in the next time slot if we

discharge them at the maximum power supported by the charger

in this time slot by calling DischargeEVs. If there is not enough

EVs in S2 to cover the deficit, we buy the remainder from the IM

market according to the current market price (Line 8). This gives

𝑧𝑡 . In the case that 𝑥𝑡 ≤ 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 , the FindEVsToCharge function

gets the amount of surplus and returns the set of EVs, denoted

by S3 not intersecting with S1, that have the lowest laxity. These

EVs are charged at the maximum power in this time slot by calling

ChargeEVs. If there is not enough EVs in S3 to absorb the surplus

energy, we sell the remainder to the IM market according to the

current market price (Line 14). This gives 𝑧𝑡 .

Since LLA is an online algorithm, it does not assume the knowl-

edge of the available solar energy and IM market prices in the next

time slots of the day, and future EV arrival times, stay times, and

energy demands. Moreover, it does not find the optimal EV charg-

ing strategy because regardless of future charging demands and

market prices it always prioritizes (a) discharging EVs with highest

laxity that will not have negative laxity in the next time slot over

buying the deficit energy from the IM market; (b) charging EVs

with lowest laxity over selling the surplus energy to the IM market.

5.3 Stage 2: Laxity-Aware Soft Actor Critic (LA-SAC)
Algorithm

The second algorithm we propose to solve the stage 2 problem

is a model-free RL algorithm that respects the EV charging dead-

lines. This algorithm is designed based on SAC [23] and is called

Laxity-Aware Soft Actor Critic (LA-SAC). It borrows the notion of

laxity from LLA and incorporates one-step laxity lookahead in the

differentiable projection layer embedded in the actor network. We

now describe the MDP and explain how the projection layer is used

to ensure safe exploration and convergence to the optimal policy.

5.3.1 MDP Formulation

State The state at time 𝑡 , is a tuple 𝑠𝑡 , where the first state

variable is the moving average of solar generation for the particular

time slot 𝑡 in the past 3 days, denoted 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 . We use the moving

average of the previous 3 days as one of the state variables to capture

the diurnal pattern of solar generation and help the (model-free)

RL agent to implicitly learn this temporal relationship. The second

and third variables are the moving average of DA and IM market

prices for the particular time slot 𝑡 in the past 7 days, denoted 𝑝𝐷𝐴
𝑡

and 𝑝𝐼𝑀𝑡 respectively. Although market prices change drastically

over the course of the day, incorporating the average of previous-

day market prices (in the same hour) could help the agent learn

temporal patterns that might exist in the two markets. The rest of

the state variables are the laxity and SoC level of each of the EVs

present in the current time slot in a charging station, before the RL

agent’s (dis)charging action is implemented.

𝑠𝑡 = (𝐸𝑠𝑜𝑙𝑎𝑟𝑡 , 𝑝𝐷𝐴
𝑡 , 𝑝𝐼𝑀𝑡 , {𝑙𝑎𝑥𝑛𝑡−1

}𝑛∈N𝑡
, {𝑆𝑜𝐶𝑛

𝑡−1
}𝑛∈N𝑡

) (5)

Action The action space in continuous and multidimensional.

Specifically, the action taken by the RL agent for every hour 𝑡 forms

a vector 𝑎𝑡 = [𝑦0

𝑡 , · · · , 𝑦
|N𝑡 |−1

𝑡 ] where 𝑦𝑛𝑡 is the charge or discharge

decision taken for the 𝑛𝑡ℎ EV that is present in one of the charging

stations in this hour and satisfies the following conditions:

−𝛼𝑑 ≤ 𝑦𝑛𝑡 ≤ 𝛼𝑐 ∀𝑛 ∈ N𝐷
𝑡 , (6)

0 ≤ 𝑦𝑛𝑡 ≤ 𝛼𝑐 ∀𝑛 ∈ N𝑡 \ N𝐷
𝑡 . (7)

Reward The reward obtained by the RL agent in hour 𝑡 , de-

noted by 𝑟𝑡 , is a scalar value calculated based on the profit that will

be generated by taking actions that charge or discharge the EVs

feasibly and trade the surplus or deficit in the IM market according

to its current price. To help the agent in taking actions that result

in the maximum return, we reward the agent as follows

𝑟𝑡 = 𝑧𝑡 · 𝑝𝐼𝑀𝑡 + 𝜁 · ¯𝑙𝑎𝑥𝑡 . (8)

The first term is the immediate reward received by the agent. It

depends on how much energy is traded in the IM market (i.e.,
𝑧𝑡 = 𝐸𝑠𝑜𝑙𝑎𝑟𝑡 − 𝑥𝑡 − 1⊺𝑎𝑡 ) and the current market price. The second

term is the average laxity of all the EVs that are present at the

charging stations at time 𝑡 , denoted as
¯𝑙𝑎𝑥𝑡 , and a positive scaling

factor 𝜁 (𝜁 = 2 in our experiments). As discussed earlier, the laxity

of an EV characterizes the charging flexibility. Thus, the second

term is included to incentivize the agent to take actions that do not

significantly lower this flexibility on average.

5.3.2 Soft Actor Critic RL Agent The SAC algorithm [23] is

a policy gradient algorithm which is more suitable for tackling

continuous action space problems. In this case, a parameterized

function (i.e., a neural network) denoted 𝜋𝜃 , represents the pol-

icy of the RL agent. The policy parameter is updated towards

the gradient direction of a performance function 𝐽 (𝜃 ), as follows:
𝜃 ← 𝜃 + 𝛾∇𝜃 𝐽 (𝜃 ). The SAC algorithm encourages further ex-

ploration of the agent by incorporating an entropy measure in

the reward function. The objective is to maximize both the en-

tropy and expected return. The performance function is given by:

𝐽 (𝜃 ) = ∑𝑇
𝑡=1
E(𝑠𝑡 ,𝑎𝑡 )∼𝜌𝜋 [𝑟𝑡 + 𝜈H(𝜋 (.|𝑠𝑡 ))]. Here, 𝜌𝜋 denotes the

marginal distribution for the state-action pairs (𝑠𝑡 , 𝑎𝑡 ) sampled

from the policy 𝜋 . The entropy measure and entropy importance

are denoted byH and 𝜈 , respectively. We refer the readers to [23]

for further details about SAC, including the policy and value func-

tions along with their gradients. To enable the RL agent to do safe

exploration and learn the hard constraints, we redefine the loss

function as explained in the next section. The Adam optimizer is

used with a learning rate of 0.0001, the discount factor is set to be

0.99, and the batch size is set to 72. We allow automatic entropy

tuning, which balances exploitation and exploration for the agent.
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5.3.3 Safe Projection Layer The action selected according to

𝜋𝜃 , which is the neural network that approximates the policy and

is parameterized by 𝜃 , may not satisfy the hard constraints in our

problem (i.e., meeting charging demands by the respective dead-

lines). To get a safe policy, the output of this neural network is

passed to a differentiable projection layer P that maps the action

to the safe region by solving an optimization problem. Hence, we

write the safe policy as 𝜋𝜃 (𝑠𝑡 ) = PS
(
𝜋𝜃 (𝑠𝑡 )

)
where S is the safe

region, i.e., the feasible set of Problem (10) described below. The

SAC agent is trained to minimize the following loss function:

L(𝜃, 𝑠𝑡 ) = −𝐽 (𝜃 ) + 𝜉 ∥𝜋𝜃 (𝑠𝑡 ) − 𝜋𝜃 (𝑠𝑡 )∥22 , (9)

where 𝜉 is a non-negative hyper-parameter. We add L(𝜃, 𝑠𝑡 ) to the

policy function equation and to the function used for calculating

the loss of automatic entropy tuning [23]. As a result, the hard

constraints of our problem formulation are learned by the neural

network of the SAC agent via backpropagation.

The optimization problem that becomes the differentiable pro-

jection layer within the actor network of SAC is written below:

minimize

𝑎𝑡 ,𝐴𝐶,𝐴𝐷
∥𝑎𝑡 − 𝑎𝑡 ∥22 (10a)

subject to 𝐴𝐷𝑛
𝑡 = 0, ∀𝑛 ∈ N𝑡 \ N𝐷

𝑡 (10b)

− 𝛼𝑑 ≤ 𝐴𝐷𝑛
𝑡 ≤ 0, ∀𝑛 ∈ N𝐷

𝑡 (10c)

0 ≤ 𝐴𝐶𝑛
𝑡 ≤ 𝛼𝑐 , ∀𝑛 ∈ N𝑡 (10d)

𝑦𝑛𝑡 = 𝐴𝐶𝑛
𝑡 +𝐴𝐷𝑛

𝑡 , ∀𝑛 ∈ N𝑡 (10e)

𝑆𝑜𝐶𝑛
𝑡+1 = 𝑆𝑜𝐶𝑛

𝑡 +
𝐴𝐶𝑛

𝑡 𝜂𝑐

𝑏𝑛
+
𝐴𝐷𝑛

𝑡

𝜂𝑑𝑏𝑛
, ∀𝑛 ∈ N𝑡 (10f)

𝛿𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑛
𝑡+1 ≤ 𝛿𝑚𝑎𝑥 , ∀𝑛 ∈ N𝑡 (10g)

𝑙𝑎𝑥𝑛𝑡+1 ≥ 0, ∀𝑛 ∈ N𝑡 (10h)

In this formulation, 𝑎𝑡 is the pre-projection action vector, i.e., the
set of actions taken by the RL agent concerning the connected EVs,

before it is passed to the projection layer in the neural network. This

optimization problem finds the post-projection action vector 𝑎𝑡 that

ensures the charging problem remains feasible for each EV and has

the minimum Euclidean distance from the pre-projection action

vector. The constraints define bounds for charge and discharge

rates, and the SoC of batteries. The last constraint is to force the

laxity of every EV to remain non-negative in the next hour if we

implement 𝑎𝑡 in this hour. Here 𝑙𝑎𝑥𝑛
𝑡+1 can be defined by plugging

in 𝑆𝑜𝐶𝑛
𝑡+1 in Equation (4) and replacing 𝑡 with 𝑡 + 1. This ensures

the problem remains feasible and all charging deadlines can be met.

6 Evaluation
We describe the datasets used for training and evaluation of the

proposed VPP operating strategies, and explain our two baselines.

6.1 Dataset Preparation
We combine four datasets that contain real solar traces, DA mar-

ket prices, IM market prices, and EV charging sessions between

January 1, 2020 and December 31, 2020, to create a test dataset

that is used to evaluate the proposed VPP operating strategies and

baselines (described in the next section). All these datasets pertain

to the same region in Rotterdam, Netherlands. Specifically, we pull

hourly solar irradiance data via the Solcast API,
5
using latitude and

5
https://solcast.com/

(a) (b) (c)
Figure 3: Empirical distribution of solar generation and EV
mobility data: (a) daily solar generation where each gray
curve represents the PV system output on a specific day and
the blue curve represents the hourly mean solar generation
over one year; (b) the probability mass function (pmf) of the
number of EV arrivals in a specific hour of the day; (c) the
conditional pmf of stay times for EVs arrived in that hour.
longitude of an arbitrary location in Rotterdam. This irradiance

data is fed to the PVWatts model [18] to compute the power gen-

erated by a PV system located at these coordinates. The tilt angle

of the panels is set to 51 degrees and their orientation angle to

270 degrees. The size of the PV system is defined according to the

maximum EV charging demand, which is 200 kW-peak in our study.

Figure 3a shows the daily solar production curves of this PV system.

We obtain the hourly DA market price data for the Dutch market

from the European Network of Transmission System Operators [2],

and the IM market price data from the regional Transmission Sys-

tem Operator, called TENNET [5]. We use the dataset released by

ElaadNL, a large charging infrastructure in the Netherlands [1], as

our EV dataset. This dataset contains 10,000 charging sessions that

occurred in several public EV chargers operated by EVnetNL.
6
Note

that since the initial and target SoC levels are not reported in this

dataset, we assume the target SoC of every EV is 1 and use the total

energy charged into the battery in the respective charging session

to calculate its initial SoC. We evaluate the proposed operating

strategies (LLA and LA-SAC) and baselines on this test dataset.

We create a new dataset, separate from the test dataset described

above, and use it only to train the LA-SAC agent in the second

operating strategy. This is necessary because the amount of histori-

cal data (charging sessions) in the ElaadNL dataset is not enough

to learn a near-optimal policy via reinforcement learning. To ob-

tain a sufficiently large number of episodes, we synthesize realistic

charging sessions. Specifically, we fit distributions to EV arrival

times (depicted in Figure 3b), EV stay times (depicted in Figure 3c),

and EV charging demands in the ElaadNL dataset. We assume that

the number of arrivals in each hour of the day follows Poisson

distribution with a parameter that depends on that particular hour.

Since the stay time correlates with the arrival time, we fit a Gauss-

ian mixture model, using Kernel Density Estimation (KDE), to the

empirical distribution of stay times for EVs that arrived in a cer-

tain hour of the day. For the initial SoC levels, we use a truncated

Gaussian distribution with mean 0.49 and standard deviation of

0.25, with the minimum and maximum SoC being 0.03 and 0.97

respectively; the two moments of the Gaussian distribution are de-

fined according to the distribution of initial SoC in the test dataset.

Furthermore, we assume that all EVs must be fully charged before

they leave the charging station and set 𝑆𝑜𝐶
𝑛
accordingly. We set

the size of all EV batteries to 80kWh (similar to Tesla Model 3), the

6
https://evnet.nl/

https://solcast.com/global-pv-power-solar-api/?gclid=Cj0KCQiAieWOBhCYARIsANcOw0z9iHci3KnZTu5h_DMjwn7TzgWhAPyfSgmYKJzVwQHyGdXBDmS-hRYaAvLAEALw_wcB
https://www.evnet.nl/opladen/evnetnl-laadpalen/
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maximum charge and discharge rates to 11kW, and the charge and

discharge efficiencies to 0.98. We generate almost 3 years worth

of EV charging sessions by sampling from these distributions. To

create the training dataset, this data is combined with real market

prices and solar traces that are collected from the same sources we

used to create the test dataset, this time for a period that ends on

December 31, 2019. This allows us to train the LA-SAC agent for

up to 1,000 episodes, where each episode consists of 24 one-hour

time steps, representing 1 day.

6.2 Baselines
6.2.1 Offline Deterministic Baseline The first baseline solves

Problem (3) using the actual values of the hourly market prices

(P𝐷𝐴,P𝐼𝑀 ), solar generation (E𝑠𝑜𝑙𝑎𝑟 ), and EV mobility and energy

demand (𝑡𝑛𝑠 , 𝜏
𝑛, 𝑆𝑜𝐶𝑛, 𝑆𝑜𝐶

𝑛
). The solution would give the maximum

profit the VPP can make by operating in the two-stage electricity

market, i.e., X*, Y*𝑛 , and Z*. Note that we do not need to solve

the stage 2 problem separately, because we obtain the optimal EV

charging schedule as the LP is solved with perfect information.

This baseline, which we call ORACLE, gives an upper bound on

the VPP’s profit. In practice, the VPP operates under significant

uncertainty, hence it is impossible to generate this much profit.

6.2.2 Current Practice in EV Charging The current practice

in EV charging, referred to as CHRG_ASAP, is charging an EV at

the maximum power as soon as it gets connected to a charger. This

strategy minimizes the length of the charging session. It combines

the solution of stage 1 and stage 2 problems, when they are solved

without taking advantage of V2G. More specifically, for solving

stage 1 under this baseline, Problem (2) is modified by dropping

constraint (2g) and writing constraint (2f) for all 𝑛 ∈ N𝑡 , and then

Problem (2) is solved using the approach described in Section 5.1.

In stage 2, EVs are charged at the maximum power when they

arrive at a charging station. The main drawback of this strategy is

the reduced flexibility, limiting the VPP options when it comes to

addressing potential deviations from day-ahead commitments.

7 Results
We now evaluate the performance of the proposed VPP operating

strategies on the dataset described in Section 6. We investigate

the profitability of the VPP in different scenarios considering five

different V2G participation rates (0%, 25%, 50%, 75%, 100%), where

the participation rate is defined as the ratio of EVs whose battery

can be discharged to the total number of EVs that visit the charging

stations in one day. Hence, 0% participation implies that none of
the EVs that arrive at the charging stations can be discharged, and

100% participation implies that all EVs might be discharged as long

as their charging demand can be met by their deadline. For a fixed

participation rate, we randomly sample the required number of EVs

to participate in V2G from the set of EVs that will visit the charging

stations during the day.

Figure 4 compares the annual profit earned by the VPP when it

adopts CHRG_ASAP, LLA, and LA-SAC.
7
We see that both LLA

and LA-SAC greatly increase the VPP’s profit for all V2G partici-

pation rates, while the profit earned under CHRG_ASAP is much

7
Recall that both strategies solve the stage 1 problem using a WS approach. But, for

brevity, we just use the name of the algorithm used in stage 2 to refer to each strategy.

Figure 4: Annual profit
earned by the VPP for vari-
ous V2G participation rates.

Figure 5: The reward ob-
tained per episode by LA-SAC
for 100% V2G participation.

lower and does not vary with the V2G participation rate because it

does not take advantage of bidirectional charging. The increased

profitability of the VPP when all EVs participate in V2G compared

to when V2G is not supported (52% and 42% increase under LLA and

LA-SAC, respectively) highlights the importance of bidirectional

charging in making this kind of VPP viable. Table 1 compares the

annual profit earned by the VPP using each operating strategy as

a percentage of the annual profit generated by ORACLE for the

same V2G participation rate. The result indicates that for 100%

V2G participation case, LA-SAC is the best performing algorithm,

achieving 51.4% of the profit that could be possibly earned if there

was no uncertainty, followed by LLA which achieves 39.6% of the

profit earned by ORACLE. The gap between the performance of the

proposed operating strategies and ORACLE widens slightly as the

V2G participation rate increases. We attribute this to the increased

complexity of the problem when more storage capacity becomes

available. It is important to note that LLA achieves around 40% of

the profit that could be possibly earned if there was no uncertainty

using a simple heuristic. However, should the VPP be able to afford

the training cost of LA-SAC, its annual profit can be increased by

up to e 2,002 compared to when it adopts LLA. Recall that LLA

and LA-SAC do not violate the charging deadlines because they

guarantee the non-negativity of laxity at all times.

Lastly, we briefly discuss the number of episodes required to

train a policy using the LA-SAC algorithm. We use 3 random seeds

(independent trials) to train a policy using this algorithm. In each

trial, the policy is trained for 1,000 episodes. Figure 5 depicts the

learning curve of the RL agent assuming 100% participation in V2G.

The solid curve corresponds to the mean over 3 trials and the shaded

region shows one standard error from the mean. It can be seen that

the RL agent demonstrates improved performance after around 600

episodes (days). We witnessed stable performance when the learned

policy (after 1,000 episodes) was evaluated on the test dataset.

8 Conclusion and Future Directions
Operating the DERs in a VPP is a challenging task owing to the large

number of stochastic processes that govern demand, supply, and

market prices. In this paper, we considered an emerging type of VPP

that integrates a fleet of EVs with bidirectional chargers and solar

systems.We proposed efficient and practical operating strategies for

this VPP when participating in a two-stage electricity market. The

VPP places energy bids in the DA market according to the average

solution of a sequence of deterministic linear programs solved for



BuildSys ’22, November 9–10, 2022, Boston, MA, USA Saidur Rahman, Linda Punt, Omid Ardakanian, Yashar Ghiassi, and Xiaoqi Tan

V2G participation (%)
Algorithm 0 25 50 75 100

CHRG_ASAP 37.5% 32.4% 28.3% 25.2% 22.8%

LLA 42.7% 41.7% 40.8% 40.3% 39.6%

LA-SAC 59.6% 56.8% 54.8% 53.2% 51.4%

Table 1: The profit earned under different strategies as a
percentage of the profit earned byORACLE (assuming perfect
information) for the same V2G participation rate.
different realizations of random variables (forecast scenarios), and

trades in the IM market to honor its day-ahead commitments and

satisfy the EV charging demands. We proposed one heuristic and

one RL-based algorithm with a differentiable projection layer to

maximize the profit of this VPP on the operation day, given the

day-ahead commitments. We evaluated profitability of this VPP

under these operating strategies using real data pertaining to a

specific region in the Netherlands, and compared it with the offline

optimal and current EV charging baselines. Our result shows that

the proposed operating strategies exhibit strong performance and

outperform the prevalent practice in EV charging, and that enabling

V2G can substantially increase the profit of this kind of VPP.

In future work, we aim to explore a related but structurally dif-

ferent case, in which the EV owners and the owner of the charging

stations (i.e., the aggregator) are different agents. In that case, the

aggregator needs to design a billing mechanism to charge the EV

owners for the service and another mechanism to incentivize them

to participate in V2G (given the battery degradation cost), while

making sure that the VPP remains profitable and deadlines are met.
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